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Abstract. A general theoretical treatment is developed for the solution of the time-dependent

coagulation equation (with constant coagulation kernel) in the presence of a source term
possessing arbitrary time dependence. It is shown how the relevant nonlinear first-order
differential equation can be transformed into a linear second-order equation, which can then be
used to obtain the general solution of the problem together with information about its asymptotic

long-term behaviour. The technique is applied to a periodic source term where it is found that
the long-term behaviour of the solution exhibits the same periodicity as the source. Detailed
results are derived for particular source terms.

1. Introduction

A considerable amount of effort has been put into the solution of the coagulation equation
since the pioneering work of Smoluchowski (1917). However, the majority of this has
been devoted to the treatment of an isolated system of coagulating clusters where the total
amount of particulate material is constant—see Drake (1972), Twomey (1977), Pruppacher
and Klett (1980), Williams and Loyalka (1991) and references contained therein. One
of the more important generalizations of this simple picture is the introduction into the
coagulation equation of a source term, and it would appear that very little has been done
hitherto on a systematic approach to the resulting problem for the situation where this
source term possesses arbitrary time variation. As a first step in this direction we proceed
by considering, in the present paper, such a systematic approach for the case of a constant
coagulation kernel.

In section 2 we introduce a suitable generating function in order to allow the problem
to be formulated as a nonlinear differential equation and in section 3 we show how this
can be transformed into a linear differential equation, albeit of higher order. We tackle the
latter by utilizing standard techniques for such equations, and in section 4 apply our method
to a source term which is periodic in time, making use of Floquet's theorem to establish
general results concerning the behaviour of the solution. Finally, in section 5 we illustrate
our approach with a specific periodic source term.

We note that the assumption of a constant coagulation kernel is known to be a good
approximation for Brownian coagulation of an aerosol or hydrosol (Friedlander 1977)
and hence our treatment is relevant to the coagulation of such sols with particle sources
possessing arbitrary time dependence—in particular, the results of sections 4 and 5 apply to
pulsed particle sources. Our approach also provides a benchmark result for the validation of
the numerical methods which may well be necessary when other coagulation mechanisms
with volume dependent kernels are taken into account.
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2. Formulation of the problem

We postulate the coagulation of initially identical particles into clusters, and (e} be the
number density at time of clusters containing particles. We suppose that(0) is given

and that forr > 0 there is a particle source representedsSh§). (If no coagulation has
occurred prior tar = 0 and if the source injects only single particles into the system, then
forr > 1,n,(0) = 0 and S, (r) = 0.) Now for the constant coagulation kerne| n, ()
satisfies the equation.

dnr 1 r—1 o0
o :EP;nl,n,,p—Pn,];n,,—}-S, t>0r=>1 D)

together with the initial boundary condition that(0) is given. We non-dimensionalize
equation (1) by defining

T=1t/1 m, = toPn—Z’ W, = tgP% (2)
for some constang, when equation (1) takes the form

dm, r—1 o0

= I;m,,m,_,, —2m, pzlm,, + W, (t>0,r>1) (3)

together with the boundary conditions
m,(0) = g, (given). (3b)

We begin the solution of equations (3) by defining a generating fundi@nz) by
Crt.oy=)» mz T(r.2)=) W2 @)
r=1 r=1

and sinceC(r,1) and T(r, 1) are respectively proportional to the total particle humber
density and the total particle source term, it is to be expected that the power series
expansions (4) are both convergent fox@ < 1. It then readily follows from equation £3

that C(z, z) satisfies

dcéi’ ) e P - 20, DC(r. ) + T, 2) (5a)
and therefore

dc((;r’ Y lcw )R+ T@ . (5b)
Letting

F(r,2) =C(r,1) — C(z,2) Vit,2)=T(,1) —T(t,2) (6)
now yields

dF;’ D PP+ Vo) (72)
with boundary condition

FO.9 =3 40— = Fol) (given. (7h)

r=1
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We note that the total number of clusters at timeV(¢) is given by
N(t) =Y n(t) = (2/1oP)C(x, 1) = (2/1P)F (z, 0) ®)
r=1

and hence may be immediately obtained from the solution of equatign (7

Finally, we remark that if there exists additionally a mechanism for the removal of
clusters from the system at a constant ratfor example, by deposition on the walls of
the containing vessel) then the original equation (1) becomes modified by the addition of a
term —an, on the right-hand side. If, for this situation we now define

F(t,2) =C(t,) - C(r,2) + B V(t,2) =T(x, ) = T(r.2) + B 9)
with 8 = (1/2)aty, it transpires thafr satisfies equation &J.
3. Method of solution

In order to tackle the nonlinear equatiorujAve now define the functio: (z, z) by

G(t,2) = exp[/ F(z,2) dr] (10a)
and therefore
1dG
== 1
G dr (100)
It then readily follows from equation §j that G satisfies
?G
——l-vG=0 11
( dr? ) © (1)

which being a linear equation i6 is significantly easier to deal with than the nonlinear
equation forF. Now since equation (11) is of second-order its general solution will be a
linear combination of any two linearly independent solutions, and will thus contain two
arbitrary constants. One of these will, however, cancel out when we olstafrom
equation (18), and so if we denote two linearly independent solutions of equation (11)
be G, and G,, we deduce from equation (&Pthat the general solution faF is given by

_ Gi(t, 9 + 7RGy, 2)
Gi(t,2) + y(2)Ga(z, 2)

where the dash notation represents differentiation with respeagtaady (z) is an arbitrary
function of the parameter. The fact that this general solution fér contains only a single
arbitrary quantityy is, of course, expected sinéesatisfies the first-order equation:7 The
required unique solution faF is now obtained by application of the boundary conditiob) (7
to yield y (z). This gives

G1(0,2) + y(2)G5(0, 2) _

G1(0,2) + y(2)G2(0, 2)
from which y (z) follows immediately in terms o&5; and G,. (In the particular case when
Fo(z) = 0 corresponding to no particles being initially presert) = —G/(0, 2)/G5(0, z).)

Equation (12) in conjunction with equation (8) then yiel¢r) for r > 0, while expanding
F(z,z) as a power series ingivesm, (r > 1,¢t > 0) as minus the coefficient of .

F(z,2) (12)

Fo(z) (13)
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We now consider the most common situation in which the source injects single particles
(as distinct from clusters) into the system. It then follows from equations (4) and (6) that
equation (11) becomes (withh = W;)

G'(t,2) — (L—2)W(1)G(z,7) = 0. (14)

For certain simpleW (7) it is possible to solve this analytically to yield a solution f6r
depending in some explicit fashion on the parametéi/hen this is so the above programme
may be readily implemented, witR(z, z) first being found from equation (12) and hence
N andm, by an expansion of* as a power series in, we shall give an example of this
presently. For more generd¥ (r), however, this procedure is not practicable and instead
we expandG itself as a power series ify letting

o0
G.2) =) G (15)
r=0
On substituting this into equation (14) we then obtain
©—WGo=0 (168)
G(r) - WG(r) = —WG(r_]_) (V = 1) (1&))

It is clear that equations (16) can now be solves sequentialy @, 1, 2, ...) by whatever
technique (analytical, possibly with a Green’s function, or numerical) is appropriate for
the givenW(z). In implementing this procedure we suppose thatand G, are each
characterized by a specific linear, homogeneous boundary condition and that this condition
is applied consistently at each stage of the solution of equations (16). If equations (16) are
then solved forr = 0,1,2,..., M, equations (12) and (13) allow the firg#(+ 1) terms
of the power series foF to be found and henc¥ (t) together withm, (t)(1 < r < M) to
be obtained.

At this stage of the work it is worth confirming that our general approach through
equations (12) and (13) will yield the physically necessary resultffiatz) > 0(z > 0) if
F (0, z) > 0. To prove this, we multiply equation (11) l&y(z, z) and integrate with respect
to r from O to r. After a little manipulation this yields the result

G/(T) 1 2 G/(O) ‘ 1 ¢1\12 ’ N\12 /
o = T {[G(on [G(O) } +/O G/ + V()G dr } (17)
from which it follows immediately that@’'(z)/G(t)] > 0 since ['(0)/G(0)] > 0.

Finally, we point out a basic similarity between the long-term behaviour of the solution
F (equation (12)) of our present problem (equation (7)) and the long-term behaviour of the
solution E of the corresponding linear equatiolk ¢t)/dt = —E(t) + V(7). In the latter
case the general solution may be expressed as

E(t) = E1(r) + BE2(7)

whereE1 and E, respectively satisfy the equationggdr = —E;+V and dE,/dr = —E>,
and 8 is an arbitrary constant. A unique solution is given fo¢r) by specifying E(0)
which then determineg. Now if, as is often the case, lim[E2(t)/E1(z)] = O,

then the long-term behaviour df(r) becomes independent @f and hence independent

of the initial value E(0). The termBE(tr) is then described as forming the ‘transient
component ofE’ and the long-term behaviour df becomes independent of this transient
component and depends only on the driving tevitr). We can readily see that such
transient behaviour can also occur with the solution (12) of our nonlinear problem (7).
If a pair of linearly independent solutionS; and G, of equation (11) can be chosen
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such that lim_ [G2(t)/G1(v)] = 0 = lim,_[G5(7)/ G ()], then equation (12) gives
lim;- o F(z,z) = G)(1,2)/Gi(z, ), which is independent of (z) and hence independent
of F(0,z). Under these circumstances the initial cluster distribution has only a transient
effect on its future development and its long-term behaviour is determined entirely by the
source term.

The results obtained in this section can be usefully illustrated by the case of a source
injecting single particles with time variatian+19) 2. That is, we takéV;(t) = A/(t+10)?
(A andtg are constants) an#, = 0 (» > 2). Equation (14) then becomes

(T +10)°G" —A1l—2)G =0 (18)

with linearly independent solutiong/; = (r + 190 and G, = (t + 19)%2 where
g1 = (/L + L+ 4AQ — 2)Y?], @2 = —(1/2)[(L + 4A(1 — 2))Y? — 1], and thus
the general solution foF is given by

T+ )" 4y (@)t + 1)t
@+ Y@@ + )%

For given Fy(z), y(z) can then be determined by equation (13) and hemcebtained by

the expansion ofF as a power series in. Now, it is clear that ag — oo, the second

term in both the numerator and the denominatoo€an be neglected as compared with

the first term and hence, in accordance with the remarks of the previous paragraph we find
that the long-term behaviour df is independent of the initial conditions, being given by

F (19)

q1
F(tr,2) = . 20
(t,2) Tt (20)
Expressions foiv andn, follow immediately, all being proportional ter + 0)~1. Finally,
we make the point that the long-term behaviour (20) (though not the general result (19))
will also hold whenW;(t) takes the more general form

Wi(t) = A(T+10) 2+ Y Ayt +10) . (21)
p=3

Following the approach of Ince (1927), it is seen that equation (14) then has a regular
singularity att = co. Two linearly independent solutions of equation (14) then exist,
each of which can be expressed as a power seri€s A 7o)~ which is convergent for
sufficiently largetr. The leading terms in these two power series are the solutignand

G, of equation (18) given above, and hence it follows that the long-term behaviour of
F(t, z) will be determined by equation (20).

4. Periodic source term

We consider now the situation when the source term is periodic with period T and
hence in equation (11)V(r + T) = V(r). Under these circumstances we can utilize
Floquet’'s theorem and its consequences which apply to general linear differential equations
whose coefficients are periodic functions of the independent variable. The relevant theory
is developed in, for example, Ince (1927), Arscott (1964) and Wilson (1954), and here we
shall only briefly recapitulate the essential parts which are relevant to our application of the
theory.

Let ¥1(7) and () be any two linearly independent solutions of equation (11). Then
sinceV(t +T) = V(1), ¥1(r + T) andyro(t + T) will both satisfy equation (11) and thus
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Yi(t +T) = anhi(r) + axpa(t)
Yo(t + T) = a1 (t) + axya(t) (22)

for some constants;;, ap;, @12 and axy. We are interested in obtaining solutions of
equation (11)I'(r) which satisfy

't+T)=o0l(1) (23)

for some constant. SuchI'(z) must be capable of being expressed in the form

['(7) = A1y1(7) + A2v2(7) (24)
for constantsd;, A, and from equations (22)—(24) we then readily obtain
11— o a2 Ay
=0 25
( 021 0622—0)(142) (25)

ﬁl are respectively eigenvalues and eigenvectors of th ) natrix
2

a. We therefore expect to obtain two linearly independeérgatisfying equation (23) and
these may be identified with the solutio6s and G, of equation (11), used in section (3).
We now choose/; and vy, to satisfy the conditions

v1(0) =1 ¥1(0) =0 ¥2(0) =0 Y0 =1 (26)

when it is readily shown from equations (22) that = ¥1(T), a1 = ¥2(T), a2 = Y1 (T)
anday, = Y5(T), and that the quadratic equation for the eigenvatuegakes the form

showing that- and

02— Q0+1=0 (27)

where Q = y1(T) + ¥5(T). Now V(z,z) > 0, from which it follows (see Ince (1927))
that 0 > 2 and hence that is real. We label the solutions of equation (27)@a$>1),
o2(= o7t < 1) and the corresponding solutions of equation (11) are then given by

Gy (1) = Y2T)Y1(7) + [0p — Y(D)]Y2(7) (r=12). (28)

We now suppose to lie in the interval [0 T] and consider a dimensionless timle= nT 4+,
wheren is a positive integer. It then follows from equations (12) and (23) that

_ Gi(t,)+ 02"y (2)GY(t, 2)
G1(t, 2) + 63"y (2)G2(, 2)

wherey (z) may be found from equation (13). It is clear that for valuescofor which
the second terms in the numerator and the denominator are signifft@nitz) will not be
periodic int’. However, for sufficiently large values af (corresponding ta > 1) these
second terms will become insignificant singe< 1, and hence the long-term behaviour of
F(7’, z) will be that of a periodic function with period, being given by

Gi(z,2)
Gi(r,2)’

In accordance with the remarks of the previous section, this corresponds physically to the
cluster size distribution function becoming periodic (with the source term period) after a
time sufficiently long for the initial transient contribution to have become negligible. This
time will be significantly greater thafi/(2Ino).

F(t',z2)

(29)

F(t+nT,z) = (30)



The coagulation equation with a time-dependent source 3765
5. Applications

On the basis of the last section, the procedure to be followed for a periodic source term with
single-particle injection is as follows. Two linearly independent solutions of equation (14)
must first be found, from which we can then construct the functinandr, of section 4.
These allowo, to be obtained from equation (27) and her¢eand G, to be constructed
from equations (28). If we are interested in the solutirfor generalt’ and specified
boundary conditions at’ = 0 we then use equation (29) with(z) determined from these
boundary conditions, while if only the long-term behaviourrols of interest we may obtain

this from equation (30). In implementing this procedure we recall the point made earlier that
for certain simpleW () the solutions of equation (14) can be obtained in terms of known
functions involvingz as a parameter. This then allowgz’, z) to be found as a function of

z from which N (z") andm, (z") may finally be calculated by expandigas a power series

in z. For more complicatedV (t) it is necessary to obtain linearly independent solutions of
equation (14) as explicit power seriesjras described after equation (15). If this is done
for G (v) withr =0, 1, ..., M, then implementation of the procedure outlined above will
finally allow the calculation ofv(z’) andm,(z') forr =1,2,..., M.

Now, if we suppose¥ (r) to be not only periodic but also continuous, then even the
relatively simple formW (r) = A+ BcoS2rxt/T) gives rise to the somewhat complicated
Mathieu functions when we look for solutions of equation (14). For a more general form of
W (t) equation (14) becomes Hill's equation (Arscott 1964) with even greater complexity in
its solution. In order to illustrate the theory of the last section, we shall therefore consider
a particular discontinuous form for our periodic functid(z). Our choice is dictated
on the one hand by the requirement that we should be able to carry through the detailed
calculations analytically, and on the other by a desire W#iat) should correspond to a
source which can be generated experimentally. The form we také&(ig with period T
defined in the interval [0T] by

0 O<t<p)

W =
() K? p<t<T)

(31)
with given constantX andp(< T).

We begin by solving equation (14) separately in the two intervalp]@nd [o, T].
Since W and G are always finite, equation (14) implies that’ is always finite, from
which it follows thatG’ and G are both continuous at = p. This then allows the general
solution of equation (14) in the interval [@] to be found. This solution contains two
arbitrary constants which can then be determined in order to yield the solutigm$ and
Y2(t) satisfying the conditions (26). The results obtained are

1 0<t<p) 308
vae) = coshK (1 — 2)%(r — p)] (p<t<T) (322
T 0<T<p)
Yo(7) = 12 sinh[K (1 — 2)Y2(z — p)]
pCOShIZ{(l_Z) (7:_:0)]"_ K(l—Z)l/Z ( ST < T)
(32p)

We now proceed to calculatg ando, from equation (27) and obtain
o1 = cosh¥ + a sinhé + [(1+ a?) sint? 6 + a sinh 2]%/2
05 = cosh¥ + a sinhd — [(1 + a?) sintf 6 + a sinh ]Y/2 (33a)
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where
a=3Kp(l-2)"? 0= K(T — p)(1L—7)¥2. (33b)
Using equation (28) we now calculage; and G, and obtain
plcoshd + (2a)~1 sinh6]
+7{asinhd + [(1 + a?) sint? 6 + a sinh H]Y?} 0<t<p)
plcoshd + (2a)~ sinh@] coshy + p{a sinhd + [(1 + a?) sint? @ + a sinh B]Y/?}
x[coshg + (2a) ! sinhy] (p<t<T)

$
|

(34a)
whereg = K (t — p)(1 — 2)¥?
plcoshd + (2a)~* sinh6]
+7{asinh — [(1 + a?) sint? 6 + a sinh B]Y/?} 0<t<p)
plcoshd + (2a)~t sinhé] coshy + p{a sinhd — [(1 + a?) sintf 6 + a sinh B]Y2}
x[coshg + (2a) ! sinhy] (p<T<T).
(34b)

These forms can now be used in conjunction with equations (29) and (13) to calculate
F(1'z) for specified initial boundary conditions, or in conjunction with equation (30) to
obtain the long-term behaviour df.

Now, it is clear from the structure of equations (34) that the expressiong faill be
(algebraically) rather complicated and we therefore proceed to look at a particular limiting
form of equation (31) foW (r). We note that the total particle input into the system over
a period T is proportional toK?(T — p), and we therefore consider the situation when
K - occandT — p — 0 with

J=KXT - p) (35)

remaining finite. This means that there is a very high rate of particle injection into the
system over a very short interval of time at the end of each cycle with the total particle
input per cycle being specified. Experimentally this corresponds to intense short bursts
of particle input, each of lengthh(= T — p) injected at regular intervalg. The results
we obtain will then apply whatever profile the input has over the intevas long as
(8 u <« T and (b)p is sufficiently small for there to be no effective coagulation of the
particles during a single burst. As a consequence of this limiting procedure it is clear from
equations (3B) that® — 0 (with costp — 1, and sinl®# — 0), a — oo andaf — L(1—7z)
with L = (1/2)JT. Equations (33) then yield

o1=1+L(1—2) +[L21 - 2)? + 2L(1 — )] Y2

o2 =1+L(1—2z) —[L?(1—2)? 4 2L(1 — 2)]*? (36)
while equations (34) give for& r < T

Gi=T+{L1-2)+[L21-2)?+2L(1 -] e

Go=T+{L(—2) —[L31—2)?+2L(1 - 2)]Y?x. (37)
For the remainder of our discussion we shall focus on the long-term behavidguwbiich,
from equation (30), is given by

(1-20)L(1—2) +[L* 1 —2)* +2L(1 - 9)]*?

F+nl,2)= TIL+ 2v(l— L1 —2)] Osr<T) (39
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wherev = t/T. We begin by considering the total particle numb&r +n»n7) which from
equation (8) is given by

1 1-2 2 4 21112
M(x) = S00PN(t +nT) = F(r +nT.0) = ( T[I)f;((f_t)f]) . (39)

It is clear from this that as increases from 0 t@ the value ofM(t) decreases from

[(L2+2L)Y2 + L] to [(L2+2L)Y2 — L].

At this point it is instructive, as well as providing a useful check on our technique,
to show how result (39) can be derived by an independent approach to the problem. The
quantity M () satisfies the usual coagulation equatiol it = —M? in the interval
0< 1 < T and thus

M(t) = M—T 0O<t<T). (40)

At r = T the value ofM is instantaneously increased by an amodindue to the ‘delta
function’ particle source, and for the periodic solution we are currently investigating this
will restore the value of\f to M(0). Hence

M(0)
1+ M©O)T

This yields a quadratic equation faf (0) whose positive root substituted into equation (40)
gives the result (39).

As regardsn,, it follows from the discussion of section (2) that. (t + n7T) will be
minus the coefficient of” in a power series expansion iof the functionF(t + nT, z)
given by equation (38). For generalthe simplest expression thus obtained #for takes
the form of a very unwieldly double summation, the details of which we will not give here.
Rather, to illustrate the theory we quote now the expressions obtained famdm,. These
are

+J = M(0). (41)

B 1 LY2(L+1) (1—2v)L —2v(1—v)L¥3(L +2)¥? (422)
M T Tt 22— 0] | @+ 22 1+ 201 — )L }
. 1 LY? 2v(l—v)L
"2 T+ 20— L] { 2L+2% A+ 2v@A- L]
LY2(14+[1 —2v(1—v)]L}
x [(1 —20)L + L1217 “ (420)

and beyond this point the expressions fay rapidly become more complicated with
increasingr.

Finally, we consider the two limiting cases bf« 1 andL > 1. ForL « 1 there is
only a very small amount of coagulation within the perib&nd we would therefore expect
that the results forn, and M would agree with the solution of the standard steady-state
coagulation equation with constant source tgrnT. It is readily shown from equations (38)
and (39) that this is so. Fat > 1, on the other hand, the large amount of coagulation
within the period7” means that the number of particles at the end of the period, just before
the injection of the next burst, is effectively zero, and thus within the interval0< T
we would expectn, and M to agree with the solution of the standard source-free time-
dependent coagulation equation with initial particle numbeAgain, from equations (38)
and (39) this is readily shown to be true.
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6. Discussion

In this paper we have developed the solution of the nonlinear coagulation equation in the
presence of a source term, by reducing it to a linear equation, albeit of higher order. This has
allowed us to consider (in section 3) situations where the long-term behaviour of the solution
depends only on the source term and is independent of the initial boundary conditions, while
in section 4 we have shown that for a periodic source term the long-term behaviour of the
solution is also periodic. The technique has also allowed us to obtain analytic solutions of
the problem for some simple source terms—a worthwhile task in view of the efforts that
workers in the field have put into deriving analytic solutions of the coagulation equation in
the absence of a source term (see Drake 1972, Williams and Loyalka 1991).

Let us now consider briefly the situation where the nature of the source term precludes
a simple analytic approach and for which a numerical technique is therefore indicated.
We have discussed in section 3 the existence of long-term solutions independent of the
initial conditions and a detailed numerical investigation of such solutions is clearly of prime
importance. One possible line of approach to this would be to tackle numerically the
original coagulation equation (1) or equation (7) f8r This would however necessitate
specifying sets of particular initial conditions and endeavouring to extract from the results
a long-term solution independent of these conditions. A preferable approach might be
to deal with equation (11). If solutions of thig; and G, can be found satisfying the
condition lim_«(G2/G1) = 0 = lim,_,»(G5%/G)), then the long-term form foF is
given immediately byG’/G1, as discussed in section 3. Such an approach would certainly
appear to be more direct when the form of the source term leads to equation (11) having
solutions which are standard functions with known properties. For the case of a periodic
source term we can improve on this approach of extrapolating numerically the long-term
behaviour of F(z’, z) by using the result (29). For values af for which the second
terms in the numerator and the denominator are small compared with the respective first
terms, knowledge of (7, z) for given r and three consecutive integer values:afeadily
allows elimination of these second terms, so that the long-term behaviokirad given
by equation (30) can easily be obtained. Here, again, if the time variation of the source
term is sufficiently simple it may be possible to use equation (30) @itlbeing a standard
function. Thus, for example, iW (t) involves a cosine variation in, thenG; will involve
Mathieu functions which can be used in evaluating equation (30).
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