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Abstract. A general theoretical treatment is developed for the solution of the time-dependent
coagulation equation (with constant coagulation kernel) in the presence of a source term
possessing arbitrary time dependence. It is shown how the relevant nonlinear first-order
differential equation can be transformed into a linear second-order equation, which can then be
used to obtain the general solution of the problem together with information about its asymptotic
long-term behaviour. The technique is applied to a periodic source term where it is found that
the long-term behaviour of the solution exhibits the same periodicity as the source. Detailed
results are derived for particular source terms.

1. Introduction

A considerable amount of effort has been put into the solution of the coagulation equation
since the pioneering work of Smoluchowski (1917). However, the majority of this has
been devoted to the treatment of an isolated system of coagulating clusters where the total
amount of particulate material is constant—see Drake (1972), Twomey (1977), Pruppacher
and Klett (1980), Williams and Loyalka (1991) and references contained therein. One
of the more important generalizations of this simple picture is the introduction into the
coagulation equation of a source term, and it would appear that very little has been done
hitherto on a systematic approach to the resulting problem for the situation where this
source term possesses arbitrary time variation. As a first step in this direction we proceed
by considering, in the present paper, such a systematic approach for the case of a constant
coagulation kernel.

In section 2 we introduce a suitable generating function in order to allow the problem
to be formulated as a nonlinear differential equation and in section 3 we show how this
can be transformed into a linear differential equation, albeit of higher order. We tackle the
latter by utilizing standard techniques for such equations, and in section 4 apply our method
to a source term which is periodic in time, making use of Floquet’s theorem to establish
general results concerning the behaviour of the solution. Finally, in section 5 we illustrate
our approach with a specific periodic source term.

We note that the assumption of a constant coagulation kernel is known to be a good
approximation for Brownian coagulation of an aerosol or hydrosol (Friedlander 1977)
and hence our treatment is relevant to the coagulation of such sols with particle sources
possessing arbitrary time dependence—in particular, the results of sections 4 and 5 apply to
pulsed particle sources. Our approach also provides a benchmark result for the validation of
the numerical methods which may well be necessary when other coagulation mechanisms
with volume dependent kernels are taken into account.

0305-4470/98/163759+10$19.50c© 1998 IOP Publishing Ltd 3759



3760 S Simons

2. Formulation of the problem

We postulate the coagulation of initially identical particles into clusters, and letnr(t) be the
number density at timet of clusters containingr particles. We suppose thatnr(0) is given
and that fort > 0 there is a particle source represented bySr(t). (If no coagulation has
occurred prior tot = 0 and if the source injects only single particles into the system, then
for r > 1, nr(0) = 0 andSr(t) = 0.) Now for the constant coagulation kernelP , nr(t)
satisfies the equation.

dnr
dt
= 1

2
P

r−1∑
p=1

npnr−p − Pnr
∞∑
p=1

np + Sr (t > 0, r > 1) (1)

together with the initial boundary condition thatnr(0) is given. We non-dimensionalize
equation (1) by defining

τ = t/t0 mr = t0P nr
2

Wr = t20P
Sr

2
(2)

for some constantt0, when equation (1) takes the form

dmr
dτ
=

r−1∑
p=1

mpmr−p − 2mr
∞∑
p=1

mp +Wr (t > 0, r > 1) (3a)

together with the boundary conditions

mr(0) = qr (given). (3b)

We begin the solution of equations (3) by defining a generating functionC(τ, z) by

C(τ, z) =
∞∑
r=1

mrz
r T (τ, z) =

∞∑
r=1

Wrz
r (4)

and sinceC(τ,1) and T (τ, 1) are respectively proportional to the total particle number
density and the total particle source term, it is to be expected that the power series
expansions (4) are both convergent for 06 z 6 1. It then readily follows from equation (3a)
thatC(τ, z) satisfies

dC(τ, z)

dτ
= [C(τ, z)]2− 2C(τ,1)C(τ, z)+ T (τ, z) (5a)

and therefore

dC(τ,1)

dτ
= −[C(τ,1)]2+ T (τ, 1). (5b)

Letting

F(τ, z) = C(τ,1)− C(τ, z) V (τ, z) = T (τ, 1)− T (τ, z) (6)

now yields

dF(τ, z)

dτ
= −[F(τ, z)]2+ V (τ, z) (7a)

with boundary condition

F(0, z) =
∞∑
r=1

qr(1− zr) = F0(z) (given). (7b)
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We note that the total number of clusters at timet , N(t) is given by

N(t) =
∞∑
r=1

nr(t) = (2/t0P)C(τ, 1) = (2/t0P)F(τ, 0) (8)

and hence may be immediately obtained from the solution of equation (7a).
Finally, we remark that if there exists additionally a mechanism for the removal of

clusters from the system at a constant rateα (for example, by deposition on the walls of
the containing vessel) then the original equation (1) becomes modified by the addition of a
term−αnr on the right-hand side. If, for this situation we now define

F(τ, z) = C(τ,1)− C(τ, z)+ β V (τ, z) = T (τ, 1)− T (τ, z)+ β2 (9)

with β = (1/2)αt0, it transpires thatF satisfies equation (7a).

3. Method of solution

In order to tackle the nonlinear equation (7a) we now define the functionG(τ, z) by

G(τ, z) = exp

[ ∫
F(τ, z)dτ

]
(10a)

and therefore

F = 1

G

dG

dτ
. (10b)

It then readily follows from equation (7a) thatG satisfies(
d2G

dτ 2

)
− VG = 0 (11)

which being a linear equation inG is significantly easier to deal with than the nonlinear
equation forF . Now since equation (11) is of second-order its general solution will be a
linear combination of any two linearly independent solutions, and will thus contain two
arbitrary constants. One of these will, however, cancel out when we obtainF from
equation (10b), and so if we denote two linearly independent solutions of equation (11)
beG1 andG2, we deduce from equation (10b) that the general solution forF is given by

F(τ, z) = G′1(τ, z)+ γ (z)G′2(τ, z)
G1(τ, z)+ γ (z)G2(τ, z)

(12)

where the dash notation represents differentiation with respect toτ , andγ (z) is an arbitrary
function of the parameterz. The fact that this general solution forF contains only a single
arbitrary quantityγ is, of course, expected sinceF satisfies the first-order equation (7a). The
required unique solution forF is now obtained by application of the boundary condition (7b)
to yield γ (z). This gives

G′1(0, z)+ γ (z)G′2(0, z)
G1(0, z)+ γ (z)G2(0, z)

= F0(z) (13)

from whichγ (z) follows immediately in terms ofG1 andG2. (In the particular case when
F0(z) = 0 corresponding to no particles being initially present,γ (z) = −G′1(0, z)/G′2(0, z).)
Equation (12) in conjunction with equation (8) then yieldsN(t) for t > 0, while expanding
F(τ, z) as a power series inz givesmr (r > 1, t > 0) as minus the coefficient ofzr .
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We now consider the most common situation in which the source injects single particles
(as distinct from clusters) into the system. It then follows from equations (4) and (6) that
equation (11) becomes (withW ≡ W1)

G′′(τ, z)− (1− z)W(τ)G(τ, z) = 0. (14)

For certain simpleW(τ) it is possible to solve this analytically to yield a solution forG
depending in some explicit fashion on the parameterz. When this is so the above programme
may be readily implemented, withF(τ, z) first being found from equation (12) and hence
N andmr by an expansion ofF as a power series inz; we shall give an example of this
presently. For more generalW(τ), however, this procedure is not practicable and instead
we expandG itself as a power series inz, letting

G(τ, z) =
∞∑
r=0

zrG(r)(τ ). (15)

On substituting this into equation (14) we then obtain

G′′(0) −WG(0) = 0 (16a)

G′′(r) −WG(r) = −WG(r−1) (r > 1). (16b)

It is clear that equations (16) can now be solves sequentially (r = 0, 1, 2, . . .) by whatever
technique (analytical, possibly with a Green’s function, or numerical) is appropriate for
the givenW(τ). In implementing this procedure we suppose thatG1 andG2 are each
characterized by a specific linear, homogeneous boundary condition and that this condition
is applied consistently at each stage of the solution of equations (16). If equations (16) are
then solved forr = 0, 1, 2, . . . ,M, equations (12) and (13) allow the first (M + 1) terms
of the power series forF to be found and henceN(τ) together withmr(τ)(16 r 6 M) to
be obtained.

At this stage of the work it is worth confirming that our general approach through
equations (12) and (13) will yield the physically necessary result thatF(τ, z) > 0(τ > 0) if
F(0, z) > 0. To prove this, we multiply equation (11) byG(τ, z) and integrate with respect
to τ from 0 to τ . After a little manipulation this yields the result

G′(τ )
G(τ)

= 1

[G(τ)]2

{
[G(0)]2

[
G′(0)
G(0)

]
+
∫ τ

0
{[G′(τ ′)]2+ V (τ ′)[G(τ ′)]2} dτ ′

}
(17)

from which it follows immediately that [G′(τ )/G(τ)] > 0 since [G′(0)/G(0)] > 0.
Finally, we point out a basic similarity between the long-term behaviour of the solution

F (equation (12)) of our present problem (equation (7)) and the long-term behaviour of the
solutionE of the corresponding linear equation dE(τ)/dτ = −E(τ) + V (τ). In the latter
case the general solution may be expressed as

E(τ) = E1(τ )+ βE2(τ )

whereE1 andE2 respectively satisfy the equations dE1/dτ = −E1+V and dE2/dτ = −E2,
and β is an arbitrary constant. A unique solution is given forE(τ) by specifyingE(0)
which then determinesβ. Now if, as is often the case, limτ→∞[E2(τ )/E1(τ )] = 0,
then the long-term behaviour ofE(τ) becomes independent ofβ and hence independent
of the initial valueE(0). The termβE2(τ ) is then described as forming the ‘transient
component ofE’ and the long-term behaviour ofE becomes independent of this transient
component and depends only on the driving termV (τ). We can readily see that such
transient behaviour can also occur with the solution (12) of our nonlinear problem (7).
If a pair of linearly independent solutionsG1 and G2 of equation (11) can be chosen
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such that limτ→∞[G2(τ )/G1(τ )] = 0 = limτ→∞[G′2(τ )/G
′
1(τ )], then equation (12) gives

limτ→∞ F(τ, z) = G′1(τ, z)/G1(τ, z), which is independent ofγ (z) and hence independent
of F(0, z). Under these circumstances the initial cluster distribution has only a transient
effect on its future development and its long-term behaviour is determined entirely by the
source term.

The results obtained in this section can be usefully illustrated by the case of a source
injecting single particles with time variation(τ+τ0)

−2. That is, we takeW1(τ ) = A/(τ+τ0)
2

(A andτ0 are constants) andWr = 0 (r > 2). Equation (14) then becomes

(τ + τ0)
2G′′ − A(1− z)G = 0 (18)

with linearly independent solutionsG1 = (τ + τ0)
q1 and G2 = (τ + τ0)

q2 where
q1 = (1/2)[1 + (1 + 4A(1 − z))1/2], q2 = −(1/2)[(1 + 4A(1 − z))1/2 − 1], and thus
the general solution forF is given by

F = q1(τ + τ0)
q1−1+ γ (z)q2(τ + τ0)

q2−1

(τ + τ0)q1 + γ (z)(τ + τ0)q2
. (19)

For givenF0(z), γ (z) can then be determined by equation (13) and hencemr obtained by
the expansion ofF as a power series inz. Now, it is clear that asτ → ∞, the second
term in both the numerator and the denominator ofF can be neglected as compared with
the first term and hence, in accordance with the remarks of the previous paragraph we find
that the long-term behaviour ofF is independent of the initial conditions, being given by

F(τ, z) = q1

(τ + τ0)
. (20)

Expressions forN andnr follow immediately, all being proportional to(τ + τ0)
−1. Finally,

we make the point that the long-term behaviour (20) (though not the general result (19))
will also hold whenW1(τ ) takes the more general form

W1(τ ) = A(τ + τ0)
−2+

∞∑
p=3

Ap(τ + τ0)
−p. (21)

Following the approach of Ince (1927), it is seen that equation (14) then has a regular
singularity atτ = ∞. Two linearly independent solutions of equation (14) then exist,
each of which can be expressed as a power series in(τ + τ0)

−1 which is convergent for
sufficiently largeτ . The leading terms in these two power series are the solutionsG1 and
G2 of equation (18) given above, and hence it follows that the long-term behaviour of
F(τ, z) will be determined by equation (20).

4. Periodic source term

We consider now the situation when the source term is periodic inτ with period T and
hence in equation (11),V (τ + T ) = V (τ). Under these circumstances we can utilize
Floquet’s theorem and its consequences which apply to general linear differential equations
whose coefficients are periodic functions of the independent variable. The relevant theory
is developed in, for example, Ince (1927), Arscott (1964) and Wilson (1954), and here we
shall only briefly recapitulate the essential parts which are relevant to our application of the
theory.

Let ψ1(τ ) andψ2(τ ) be any two linearly independent solutions of equation (11). Then
sinceV (τ + T ) = V (τ), ψ1(τ + T ) andψ2(τ + T ) will both satisfy equation (11) and thus
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ψ1(τ + T ) = α11ψ1(τ )+ α21ψ2(τ )

ψ2(τ + T ) = α12ψ1(τ )+ α22ψ2(τ ) (22)

for some constantsα11, α21, α12 and α22. We are interested in obtaining solutions of
equation (11),0(τ) which satisfy

0(τ + T ) = σ0(τ) (23)

for some constantσ . Such0(τ) must be capable of being expressed in the form

0(τ) = A1ψ1(τ )+ A2ψ2(τ ) (24)

for constantsA1, A2 and from equations (22)–(24) we then readily obtain(
α11− σ α12

α21 α22− σ
)(

A1

A2

)
= 0 (25)

showing thatσ and

(
A1

A2

)
are respectively eigenvalues and eigenvectors of the (2×2) matrix

α. We therefore expect to obtain two linearly independent0 satisfying equation (23) and
these may be identified with the solutionsG1 andG2 of equation (11), used in section (3).
We now chooseψ1 andψ2 to satisfy the conditions

ψ1(0) = 1 ψ ′1(0) = 0 ψ2(0) = 0 ψ ′2(0) = 1 (26)

when it is readily shown from equations (22) thatα11 = ψ1(T ), α12 = ψ2(T ), α21 = ψ ′1(T )
andα22 = ψ ′2(T ), and that the quadratic equation for the eigenvaluesσ takes the form

σ 2−Qσ + 1= 0 (27)

whereQ = ψ1(T ) + ψ ′2(T ). Now V (τ, z) > 0, from which it follows (see Ince (1927))
thatQ > 2 and hence thatσ is real. We label the solutions of equation (27) asσ1(>1),
σ2(= σ−1

1 < 1) and the corresponding solutions of equation (11) are then given by

Gp(τ) = ψ2(T )ψ1(τ )+ [σp − ψ1(T )]ψ2(τ ) (p = 1, 2). (28)

We now supposeτ to lie in the interval [0, T ] and consider a dimensionless timeτ ′ = nT+τ ,
wheren is a positive integer. It then follows from equations (12) and (23) that

F(τ ′, z) = G′1(τ, z)+ σ 2n
2 γ (z)G

′
2(τ, z)

G1(τ, z)+ σ 2n
2 γ (z)G2(τ, z)

(29)

whereγ (z) may be found from equation (13). It is clear that for values ofτ ′ for which
the second terms in the numerator and the denominator are significant,F(τ ′, z) will not be
periodic inτ ′. However, for sufficiently large values ofτ ′ (corresponding ton� 1) these
second terms will become insignificant sinceσ2 < 1, and hence the long-term behaviour of
F(τ ′, z) will be that of a periodic function with periodT , being given by

F(τ + nT , z) = G′1(τ, z)
G1(τ, z)

. (30)

In accordance with the remarks of the previous section, this corresponds physically to the
cluster size distribution function becoming periodic (with the source term period) after a
time sufficiently long for the initial transient contribution to have become negligible. This
time will be significantly greater thanT/(2 lnσ1).
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5. Applications

On the basis of the last section, the procedure to be followed for a periodic source term with
single-particle injection is as follows. Two linearly independent solutions of equation (14)
must first be found, from which we can then construct the functionsψ1 andψ2 of section 4.
These allowσ2 to be obtained from equation (27) and henceG1 andG2 to be constructed
from equations (28). If we are interested in the solutionF for generalτ ′ and specified
boundary conditions atτ ′ = 0 we then use equation (29) withγ (z) determined from these
boundary conditions, while if only the long-term behaviour ofF is of interest we may obtain
this from equation (30). In implementing this procedure we recall the point made earlier that
for certain simpleW(τ) the solutions of equation (14) can be obtained in terms of known
functions involvingz as a parameter. This then allowsF(τ ′, z) to be found as a function of
z from whichN(τ ′) andmr(τ ′) may finally be calculated by expandingF as a power series
in z. For more complicatedW(τ) it is necessary to obtain linearly independent solutions of
equation (14) as explicit power series inz as described after equation (15). If this is done
for G(r)(τ ) with r = 0, 1, . . . ,M, then implementation of the procedure outlined above will
finally allow the calculation ofN(τ ′) andmr(τ ′) for r = 1, 2, . . . ,M.

Now, if we supposeW(τ) to be not only periodic but also continuous, then even the
relatively simple formW(τ) = A+B cos(2πτ/T ) gives rise to the somewhat complicated
Mathieu functions when we look for solutions of equation (14). For a more general form of
W(τ) equation (14) becomes Hill’s equation (Arscott 1964) with even greater complexity in
its solution. In order to illustrate the theory of the last section, we shall therefore consider
a particular discontinuous form for our periodic functionW(τ). Our choice is dictated
on the one hand by the requirement that we should be able to carry through the detailed
calculations analytically, and on the other by a desire thatW(τ) should correspond to a
source which can be generated experimentally. The form we take isW(τ) with periodT
defined in the interval [0, T ] by

W(τ) =
{

0 (06 τ 6 ρ)
K2 (ρ < τ < T )

(31)

with given constantsK andρ(< T ).
We begin by solving equation (14) separately in the two intervals [0, ρ] and [ρ, T ].

SinceW andG are always finite, equation (14) implies thatG′′ is always finite, from
which it follows thatG′ andG are both continuous atτ = ρ. This then allows the general
solution of equation (14) in the interval [0, T ] to be found. This solution contains two
arbitrary constants which can then be determined in order to yield the solutionsψ1(τ ) and
ψ2(τ ) satisfying the conditions (26). The results obtained are

ψ1(τ ) =
{

1 (06 τ 6 ρ)

cosh[K(1− z)1/2(τ − ρ)] (ρ 6 τ < T )
(32a)

ψ2(τ ) =


τ (06 τ 6 ρ)

ρ cosh[K(1− z)1/2(τ − ρ)] + sinh[K(1− z)1/2(τ − ρ)]
K(1− z)1/2 (ρ 6 τ 6 T ).

(32b)

We now proceed to calculateσ1 andσ2 from equation (27) and obtain

σ1 = coshθ + a sinhθ + [(1+ a2) sinh2 θ + a sinh 2θ ]1/2

σ2 = coshθ + a sinhθ − [(1+ a2) sinh2 θ + a sinh 2θ ]1/2 (33a)
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where

a = 1
2Kρ(1− z)1/2 θ = K(T − ρ)(1− z)1/2. (33b)

Using equation (28) we now calculateG1 andG2 and obtain

G1 =


ρ[coshθ + (2a)−1 sinhθ ]

+τ {a sinhθ + [(1+ a2) sinh2 θ + a sinh 2θ ]1/2} (06 τ 6 ρ)
ρ[coshθ + (2a)−1 sinhθ ] coshϕ + ρ{a sinhθ + [(1+ a2) sinh2 θ + a sinh 2θ ]1/2}
×[coshϕ + (2a)−1 sinhϕ] (ρ 6 τ 6 T )

(34a)

whereϕ = K(τ − ρ)(1− z)1/2

G2 =


ρ[coshθ + (2a)−1 sinhθ ]

+τ {a sinhθ − [(1+ a2) sinh2 θ + a sinh 2θ ]1/2} (06 τ 6 ρ)
ρ[coshθ + (2a)−1 sinhθ ] coshϕ + ρ{a sinhθ − [(1+ a2) sinh2 θ + a sinh 2θ ]1/2}
×[coshϕ + (2a)−1 sinhϕ] (ρ 6 τ 6 T ).

(34b)

These forms can now be used in conjunction with equations (29) and (13) to calculate
F(τ ′z) for specified initial boundary conditions, or in conjunction with equation (30) to
obtain the long-term behaviour ofF .

Now, it is clear from the structure of equations (34) that the expressions forF will be
(algebraically) rather complicated and we therefore proceed to look at a particular limiting
form of equation (31) forW(τ). We note that the total particle input into the system over
a periodT is proportional toK2(T − ρ), and we therefore consider the situation when
K →∞ andT − ρ → 0 with

J = K2(T − ρ) (35)

remaining finite. This means that there is a very high rate of particle injection into the
system over a very short interval of time at the end of each cycle with the total particle
input per cycle being specified. Experimentally this corresponds to intense short bursts
of particle input, each of lengthµ(= T − ρ) injected at regular intervalsT . The results
we obtain will then apply whatever profile the input has over the intervalµ as long as
(a) µ � T and (b)µ is sufficiently small for there to be no effective coagulation of the
particles during a single burst. As a consequence of this limiting procedure it is clear from
equations (33b) thatθ → 0 (with coshθ → 1, and sinhθ → θ ), a→∞ andaθ → L(1−z)
with L = (1/2)JT . Equations (33a) then yield

σ1 = 1+ L(1− z)+ [L2(1− z)2+ 2L(1− z)]1/2

σ2 = 1+ L(1− z)− [L2(1− z)2+ 2L(1− z)]1/2 (36)

while equations (34) give for 06 τ < T

G1 = T + {L(1− z)+ [L2(1− z)2+ 2L(1− z)]1/2}τ
G2 = T + {L(1− z)− [L2(1− z)2+ 2L(1− z)]1/2}τ. (37)

For the remainder of our discussion we shall focus on the long-term behaviour ofF which,
from equation (30), is given by

F(τ + nT , z) = (1− 2ν)L(1− z)+ [L2(1− z)2+ 2L(1− z)]1/2

T [1+ 2ν(1− ν)L(1− z)] (06 τ < T ) (38)
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whereν = τ/T . We begin by considering the total particle numberN(τ +nT ) which from
equation (8) is given by

M(τ) = 1

2
t0PN(τ + nT ) = F(τ + nT , 0) = (1− 2ν)L+ (L2+ 2L)1/2

T [1+ 2ν(1− ν)L]
. (39)

It is clear from this that asτ increases from 0 toT the value ofM(τ) decreases from

[(L2+ 2L)1/2+ L] to [(L2+ 2L)1/2− L].

At this point it is instructive, as well as providing a useful check on our technique,
to show how result (39) can be derived by an independent approach to the problem. The
quantity M(τ) satisfies the usual coagulation equation dM/dτ = −M2 in the interval
06 τ < T and thus

M(τ) = M(0)

1+M(0)τ (06 τ < T ). (40)

At τ = T the value ofM is instantaneously increased by an amountJ due to the ‘delta
function’ particle source, and for the periodic solution we are currently investigating this
will restore the value ofM to M(0). Hence

M(0)

1+M(0)T + J = M(0). (41)

This yields a quadratic equation forM(0) whose positive root substituted into equation (40)
gives the result (39).

As regardsmr , it follows from the discussion of section (2) thatmr(τ + nT ) will be
minus the coefficient ofzr in a power series expansion inz of the functionF(τ + nT , z)
given by equation (38). For generalr the simplest expression thus obtained formr takes
the form of a very unwieldly double summation, the details of which we will not give here.
Rather, to illustrate the theory we quote now the expressions obtained form1 andm2. These
are

m1 = 1

T [1+ 2ν(1− ν)L]

{
L1/2(L+ 1)

(L+ 2)1/2
+ (1− 2ν)L− 2ν(1− ν)L3/2(L+ 2)1/2

1+ 2ν(1− ν)L
}

(42a)

m2 = 1

T [1+ 2ν(1− ν)L]

{
L1/2

2(L+ 2)3/2
+ 2ν(1− ν)L

[1+ 2ν(1− ν)L]2

×
[
(1− 2ν)L+ L

1/2{1+ [1− 2ν(1− ν)]L}
(L+ 2)1/2

]}
(42b)

and beyond this point the expressions formr rapidly become more complicated with
increasingr.

Finally, we consider the two limiting cases ofL � 1 andL � 1. ForL � 1 there is
only a very small amount of coagulation within the periodT and we would therefore expect
that the results formr andM would agree with the solution of the standard steady-state
coagulation equation with constant source termJ/T . It is readily shown from equations (38)
and (39) that this is so. ForL � 1, on the other hand, the large amount of coagulation
within the periodT means that the number of particles at the end of the period, just before
the injection of the next burst, is effectively zero, and thus within the interval 0< t < T

we would expectmr andM to agree with the solution of the standard source-free time-
dependent coagulation equation with initial particle numberJ . Again, from equations (38)
and (39) this is readily shown to be true.
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6. Discussion

In this paper we have developed the solution of the nonlinear coagulation equation in the
presence of a source term, by reducing it to a linear equation, albeit of higher order. This has
allowed us to consider (in section 3) situations where the long-term behaviour of the solution
depends only on the source term and is independent of the initial boundary conditions, while
in section 4 we have shown that for a periodic source term the long-term behaviour of the
solution is also periodic. The technique has also allowed us to obtain analytic solutions of
the problem for some simple source terms—a worthwhile task in view of the efforts that
workers in the field have put into deriving analytic solutions of the coagulation equation in
the absence of a source term (see Drake 1972, Williams and Loyalka 1991).

Let us now consider briefly the situation where the nature of the source term precludes
a simple analytic approach and for which a numerical technique is therefore indicated.
We have discussed in section 3 the existence of long-term solutions independent of the
initial conditions and a detailed numerical investigation of such solutions is clearly of prime
importance. One possible line of approach to this would be to tackle numerically the
original coagulation equation (1) or equation (7) forF . This would however necessitate
specifying sets of particular initial conditions and endeavouring to extract from the results
a long-term solution independent of these conditions. A preferable approach might be
to deal with equation (11). If solutions of this,G1 andG2 can be found satisfying the
condition limt→∞(G2/G1) = 0 = limt→∞(G′2/G

′
1), then the long-term form forF is

given immediately byG′1/G1, as discussed in section 3. Such an approach would certainly
appear to be more direct when the form of the source term leads to equation (11) having
solutions which are standard functions with known properties. For the case of a periodic
source term we can improve on this approach of extrapolating numerically the long-term
behaviour ofF(τ ′, z) by using the result (29). For values ofn for which the second
terms in the numerator and the denominator are small compared with the respective first
terms, knowledge ofF(τ ′, z) for given τ and three consecutive integer values ofn readily
allows elimination of these second terms, so that the long-term behaviour ofF as given
by equation (30) can easily be obtained. Here, again, if the time variation of the source
term is sufficiently simple it may be possible to use equation (30) withG1 being a standard
function. Thus, for example, ifW(τ) involves a cosine variation inτ , thenG1 will involve
Mathieu functions which can be used in evaluating equation (30).
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